

Soil Health and the Water Connection

NVaCD Annual Meeting – Fallon, NV

November 16th

Chuck Schembre

Environmental Scientist, CPESC

Today's Presentation Soil Health Demonstrations

Soil Slake Test

Water Infiltration Test

Rainfall Simulator

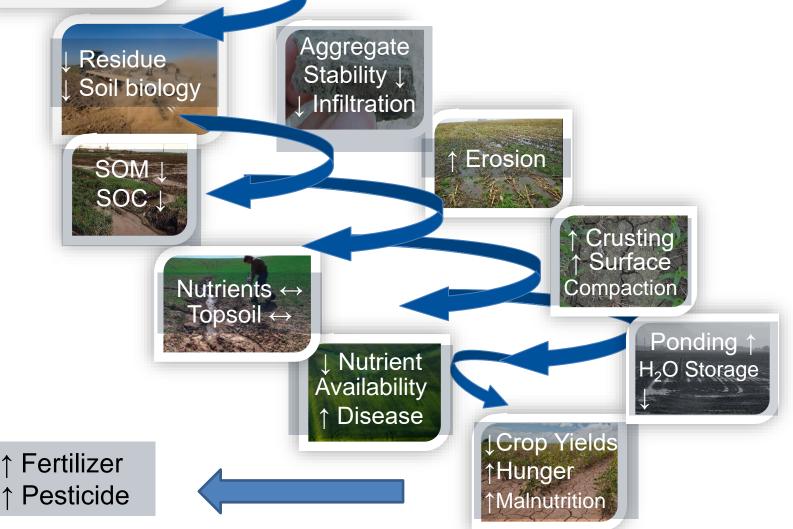
Importance of Soil Organic Matter and Soil Biology

Importance of Soil Aggregation

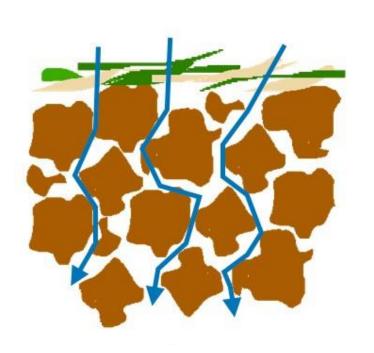
Soil – Water Relationship

SOIL SERVICES TO WATER

- 1. Water Infiltration
- 2. Water retention soil water holding capacity
- 3. Resilient to water and wind Erosion minimal sediment loss
- 4. Efficient Nutrient Cycling and Nutrient Retention Reduce N leaching
- 5. Retain or degrade chemicals, heavy metals, and other urban pollutants
- 6. Moderate Temperature: clean cool water into surface water bodies
- 7. Increase ground water recharge and duration of seasonal stream flows

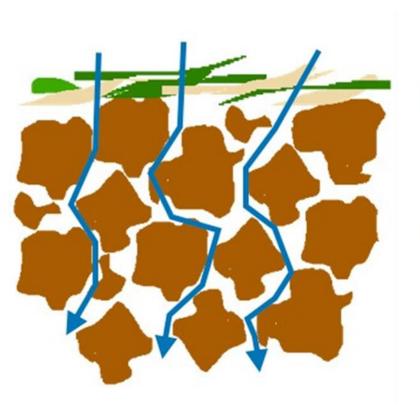

Characteristics of a Healthy Functioning Soil

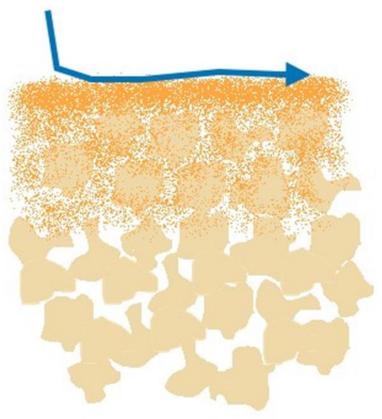
- Good Soil Porosity and Soil Structure
- High levels of stable organic matter
- Active and diverse microbial population
- Efficient nutrient cycling
- Good water storage
- Resistant to degradation
- Sequestering Carbon

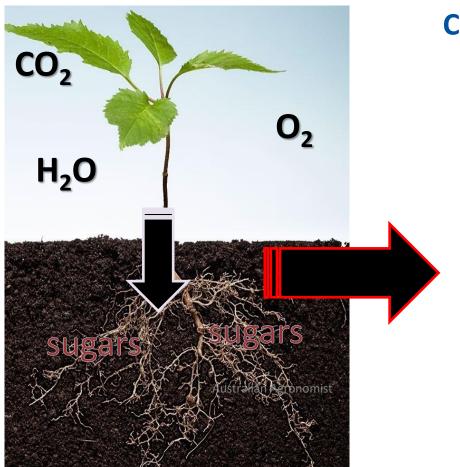


↑ Soil Disturbance

Downward Spiral of Soil Degradation




HEALTHY SOIL HAS GOOD SOIL STRUCTURE, AGGREGATE STABILITY AND POROSITY


What creates a healthy soil like this one?

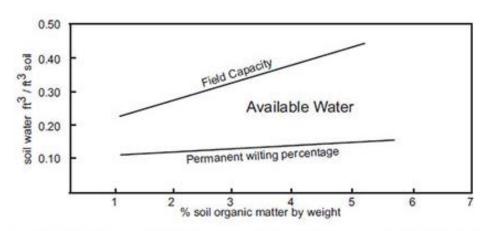
Capture Solar Energy Liquid Carbon Pathway

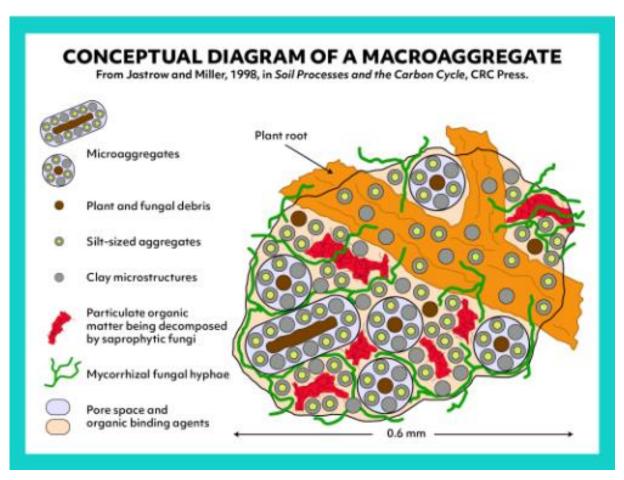
Creates a biological hot spot:

The Rhizosphere

NRCS | SHD | Soil Biology | v2.2

Soil Organic Matter Water Relationship




Figure 2. Effect of increasing organic matter on available water capacity of silt loam soils. Adapted from Hudson, SWCS, 1994.

Every 1% increase in OM (0.5% soc)

25,000 gal increase in available soil water per acre

Soil Aggregates

Well aggregated soil plays a critical role in water infiltration, water availability, nutrient cycling, gas exchange, and soil ecosystem function

Leading Causes of Water Quality Impairment NPS POLLUTION

Soil erosion – run off, sediment delivery

Nutrient loss - Nitrogen, Phosphorus, Salts

Pesticides – ground water contamination

Bacteria – livestock manure

Soil Health Benefits to Farms

Additional Benefits Reported by 100 Farmers

Benefit	% Responding Yes
Increased Yield	67
Reduced Fertilizer Input	83
Increased Crop Resilience	97
Increased Access to Field	93
Improved Loan, Land, Insurance Terms	41
Improved Water Quality	100
Protects License to Operate	98
Increased Soil Organic Matter	54

SOIL HEALTH BENEFITS TO FARMS

Summary of Findings from 100 Farms

- Average farm size was 1940 acres
- > SHMS reduced average production costs by:
 - > \$24/acre for corn
 - > \$17/acre for soybean
- SHMS increased net farm income for:
 - > 85% of farmers growing corn
 - > 88% of farmers growing soybean
- SHMS increased average net farm income by:
 - \$52/acre for corn
 - \$45/acre for soybean
- Additional benefits reported by farmers:
 - 93% reported increased access to their fields
 - 97% reported increased resilience to extreme weather

11

Chuck Schembre

775.687.9454 cschembre@ndep.nv.gov

Nevada Division of Environmental Protection Water Quality Planning Nonpoint Source Pollution Management Branch

